Bernstein-Walsh type theorems for real analytic functions in several variables
Date
Authors
Volume
Issue
Journal
Series Titel
Book Title
Publisher
Link to publishers version
Abstract
The aim of this paper is to extend the classical maximal convergence theory of Bernstein and Walsh for holomorphic functions in the complex plane to real analytic functions in R^N. In particular, we investigate the polynomial approximation behavior for functions $F: L to C, L= (Re z, Im z ) : z in K$, of the type $F= g overline h$, where g and h are holomorphic in a neighborhood of a compact set $K subset C^N$. To this end the maximal convergence number $rho(S_c,f)$ for continuous functions f defined on a compact set $S_c subset C^N$ is connected to a maximal convergence number $rho(S_r,F)$ for continuous functions F defined on a compact set $S_r subset R^N$.
Description
Keywords
Collections
License
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.