Stochastic analysis of an elastic 3D half-space respond to random boundary displacements : exact results and Karhunen-Loéve expansion

Loading...
Thumbnail Image

Date

Volume

1387

Issue

Journal

Series Titel

WIAS Preprints

Book Title

Publisher

Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik

Link to publishers version

Abstract

A stochastic response of an elastic 3D half-space to random displacement excitations on the boundary plane is studied. We derive exact results for the case of white noise excitations which are then used to give convolution representations for the case of general finite correlation length fluctuations of displacements prescribed on the boundary. Solutions to this elasticity problem are random fields which appear to be horizontally homogeneous but inhomogeneous in the vertical direction. This enables us to construct explicitly the Karhunen-Loève (K-L) series expansion by solving the eigen-value problem for the correlation operator. Simulation results are presented and compared with the exact representations derived for the displacement correlation tensor. This paper is a complete 3D generalization of the 2D case study we presented in J. Stat. Physics, v.132 (2008), N6, 1071-1095.

Description

Keywords

License

This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.