Stability and sensitivity of optimization problems with first order stochastic dominance constraints

Loading...
Thumbnail Image

Date

Volume

1206

Issue

Journal

Series Titel

WIAS Preprints

Book Title

Publisher

Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik

Link to publishers version

Abstract

We analyze the stability and sensitivity of stochastic optimization problems with stochastic dominance constraints of first order. We consider general perturbations of the underlying probability measures in the space of regular measures equipped with a suitable discrepancy distance. We show that the graph of the feasible set mapping is closed under rather general assumptions. We obtain conditions for the continuity of the optimal value and upper-semicontinuity of the optimal solutions, as well as quantitative stability estimates of Lipschitz type. Furthermore, we analyze the sensitivity of the optimal value and obtain upper and lower bounds for the directional derivatives of the optimal value. The estimates are formulated in terms of the dual utility functions associated with the dominance constraints.

Description

Keywords

License

This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.