Fast numerical methods for waves in periodic media

Loading...
Thumbnail Image

Date

Volume

1441

Issue

Journal

Series Titel

WIAS Preprints

Book Title

Publisher

Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik

Link to publishers version

Abstract

Periodic media problems widely exist in many modern application areas like semiconductor nanostructures (e.g. quantum dots and nanocrystals), semi-conductor superlattices, photonic crystals (PC) structures, meta materials or Bragg gratings of surface plasmon polariton (SPP) waveguides, etc. Often these application problems are modeled by partial differential equations with periodic coefficients and/or periodic geometries. In order to numerically solve these periodic structure problems efficiently one usually confines the spatial domain to a bounded computational domain (i.e. in a neighborhood of the region of physical interest). Hereby, the usual strategy is to introduce so-called artificial boundaries and impose suitable boundary conditions. For wave-like equations, the ideal boundary conditions should not only lead to w ell-posed problems, but also mimic the perfect absorption of waves traveling out of the computational domain through the artificial boundaries ...

Description

Keywords

License

This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.