Convergence rate estimates for Trotter product approximations of solution operators for non-autonomous Cauchy problems
Date
Volume
Issue
Journal
Series Titel
Book Title
Publisher
Link to publishers version
Abstract
In the present paper we advocate the Howland-Evans approach to solution of the abstract non-autonomous Cauchy problem (non-ACP) in a separable Banach space X. The main idea is to reformulate this problem as an autonomous Cauchy problem (ACP) in a new Banach space Lp(I;X), p 2 [1;1), consisting of X-valued functions on the time-interval I. The fundamental observation is a one-to-one correspondence between solution operators (propagators) for a non-ACP and the corresponding evolution semigroups for ACP in Lp(I;X). We show that the latter also allows to apply a full power of the operatortheoretical methods to scrutinise the non-ACP including the proof of the Trotter product approximation formulae with operator-norm estimate of the rate of convergence. The paper extends and improves some recent results in this direction in particular for Hilbert spaces.
Description
Keywords
Collections
License
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.