Chimera states are chaotic transients

Loading...
Thumbnail Image

Date

Volume

1618

Issue

Journal

Series Titel

WIAS Preprints

Book Title

Publisher

Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik

Link to publishers version

Abstract

Spatiotemporal chaos and turbulence are universal concepts for the explanation of irregular behavior in various physical systems. Recently, a remarkable new phenomenon, called "chimera states", has been described, where in a spatially homogeneous system regions of irregular incoherent motion coexist with regular synchronized motion, forming a self organized pattern in a population of nonlocally coupled oscillators. Whereas most of the previous studies of chimera states focused their attention to the case of large numbers of oscillators employing the thermodynamic limit of infinitely many oscillators, we investigate here the properties of chimera states in populations of finite size using concepts from deterministic chaos. Our calculations of the Lyapunov spectrum show that the incoherent motion, which is described in the thermodynamic limit as a stationary behavior, in finite size systems appears as weak spatially extensive chaos. Moreover, for sufficiently small populations the chimera states reveal their transient nature: after a certain time-span we observe a sudden collapse of the chimera pattern and a transition to the completely coherent state. Our results indicate that chimera states can be considered as chaotic transients, showing the same properties as type-II supertransients in coupled map lattices.

Description

Keywords

License

This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.