Dispersion of nonlinear group velocity determines shortest envelope solitons

Loading...
Thumbnail Image

Date

Volume

1639

Issue

Journal

Series Titel

WIAS Preprints

Book Title

Publisher

Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik

Link to publishers version

Abstract

We demonstrate that a generalized nonlinear Schrödinger equation (NSE), that includes dispersion of the intensity-dependent group velocity, allows for exact solitary solutions. In the limit of a long pulse duration, these solutions naturally converge to a fundamental soliton of the standard NSE. In particular, the peak pulse intensity times squared pulse duration is constant. For short durations this scaling gets violated and a cusp of the envelope may be formed. The limiting singular solution determines then the shortest possible pulse duration and the largest possible peak power. We obtain these parameters explicitly in terms of the parameters of the generalized NSE.

Description

Keywords

License

This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.