Amplifications of picosecond laser pulses in tapered semiconductor amplifiers : numerical simulations versus experiments

Loading...
Thumbnail Image
Date
2011
Volume
1657
Issue
Journal
Series Titel
Book Title
Publisher
Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik
Link to publishers version
Abstract

We apply a travelling wave model to the simulation of the amplification of laser pulses generated by Q-switched or mode-locked distributed-Bragg reflector lasers. The power amplifier monolithically integrates a ridge-waveguide section acting as pre-amplifier and a flared gain-region amplifier. The diffraction limited and spectral-narrow band pulses injected in to the pre-amplifier have durations between 10 ps and 100 ps and a peak power of typical 1 W. After the amplifier, the pulses reach a peak power of several tens of Watts preserving the spatial, spectral and temporal properties of the input pulse. We report results obtained by a numerical solution of the travelling-wave equations and compare them with experimental investigations. The peak powers obtained experimentally are in good agreement with the theoretical predictions. The performance of the power amplifier is evaluated by considering the dependence of the pulse energy as a function of different device and material parameters.

Description
Keywords
Picosecond pulse amplification, tapered semiconductor amplifier
Citation
Tronciu, V., Schwertfeger, S., Radziunas, M., Klehr, A., Bandelow, U., & Wenzel, H. (2011). Amplifications of picosecond laser pulses in tapered semiconductor amplifiers : numerical simulations versus experiments (Vol. 1657). Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik.
Collections
License
This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.