Estimation of the signal subspace without estimation of the inverse covariance matrix

No Thumbnail Available
Date
2010
Authors
Panov, Vladimir A.
Volume
1546
Issue
Journal
Series Titel
WIAS Preprints
Book Title
Publisher
Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik
Link to publishers version
Abstract

Let a high-dimensional random vector $vecX$ can be represented as a sum of two components - a signal $vecS$, which belongs to some low-dimensional subspace $mathcalS$, and a noise component $vecN$. This paper presents a new approach for estimating the subspace $mathcalS$ based on the ideas of the Non-Gaussian Component Analysis. Our approach avoids the technical difficulties that usually exist in similar methods - it doesn't require neither the estimation of the inverse covariance matrix of $vecX$ nor the estimation of the covariance matrix of $vecN$.

Description
Keywords
License
This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.