On a higher order convective Cahn-Hilliard type equation

Loading...
Thumbnail Image

Date

Volume

1582

Issue

Journal

Series Titel

WIAS Preprints

Book Title

Publisher

Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik

Link to publishers version

Abstract

A convective Cahn-Hilliard type equation of sixth order that describes the faceting of a growing surface is considered with periodic boundary conditions. By using a Galerkin approach the existence of weak solutions to this sixth order partial differential equation is established in $L^2(0,T; dot H^3_per)$. Furthermore stronger regularity results have been derived and these are used to prove uniqueness of the solutions. Additionally a numerical study shows that solutions behave similarly as for the better known convective Cahn-Hilliard equation. The transition from coarsening to roughening is analyzed, indicating that the characteristic length scale decreases logarithmically with increasing deposition rate

Description

Keywords

License

This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.