A note on k[z]-automorphisms in two variables
Date
Volume
Issue
Journal
Series Titel
Book Title
Publisher
Link to publishers version
Abstract
We prove that for a polynomial f 2 k[x, y, z] equivalent are: (1)f is a k[z]-coordinate of k[z][x, y], and (2) k[x, y, z]/(f) = k[2] and f(x, y, a) is a coordinate in k[x, y] for some a 2 k. This solves a special case of the Abhyankar-Sathaye conjecture. As a consequence we see that a coordinate f 2 k[x, y, z] which is also a k(z)-coordinate, is a [z]-coordinate. We discuss a method for onstructing automorphisms of k[x, y, z], and observe that the Nagata automorphism occurs naturally as the first non-trivial automorphism obtained by this method essentially linking Nagata with a non-tame R-automorphism of R[x], where R = k[z]/(z2).
Description
Keywords
Collections
License
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.