Pressure-induced locking in mixed methods for time-dependent (Navier)Stokes equations
Date
Authors
Volume
Issue
Journal
Series Titel
Book Title
Publisher
Link to publishers version
Abstract
We consider inf-sup stable mixed methods for the time-dependent incompressible Stokes and NavierStokes equations, extending earlier work on the steady (Navier-)Stokes Problem. A locking phenomenon is identified for classical inf-sup stable methods like the Taylor-Hood or the Crouzeix-Raviart elements by a novel, elegant and simple numerical analysis and corresponding numerical experiments, whenever the momentum balance is dominated by forces of a gradient type. More precisely, a reduction of the L2 convergence order for high order methods, and even a complete stall of the L2 convergence order for lowest-order methods on preasymptotic meshes is predicted by the analysis and practically observed. On the other hand, it is also shown that (structure-preserving) pressure-robust mixed methods do not suffer from this locking phenomenon, even if they are of lowest-order. A connection to well-balanced schemes for (vectorial) hyperbolic conservation laws like the shallow water or the compressible Euler equations is made.
Description
Keywords
Collections
License
This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.