Coexistence of Hamiltonian-like and dissipative dynamics in chains of coupled phase oscillators with skew-symmetric coupling

Loading...
Thumbnail Image
Date
2017
Volume
2447
Issue
Journal
Series Titel
WIAS Preprints
Book Title
Publisher
Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik
Abstract

We consider rings of coupled phase oscillators with anisotropic coupling. When the coupling is skew-symmetric, i.e. when the anisotropy is balanced in a specific way, the system shows robustly a coexistence of Hamiltonian-like and dissipative regions in the phase space. We relate this phenomenon to the time-reversibility property of the system. The geometry of low-dimensional systems up to five oscillators is described in detail. In particular, we show that the boundary between the dissipative and Hamiltonian-like regions consists of families of heteroclinic connections. For larger chains with skew-symmetric coupling, some sufficient conditions for the coexistence are provided, and in the limit of N oscillators, we formally derive an amplitude equation for solutions in the neighborhood of the synchronous solution. It has the form of a nonlinear Schrödinger equation and describes the Hamiltonian-like region existing around the synchronous state similarly to the case of finite rings.

Description
Keywords
License
This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.