Amplitude equations for collective spatio-temporal dynamics in arrays of coupled systems
Loading...
Date
2015
Journal Title
Journal ISSN
Volume Title
Publisher
Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik
Abstract
We study the coupling induced destabilization in an array of identical oscillators coupled in a ring structure where the number of oscillators in the ring is large. The coupling structure includes different types of interactions with several next neighbors. We derive an amplitude equation of Ginzburg-Landau type, which describes the destabilization of a uniform stationary state and close-by solutions in the limit of a large number of nodes. Studying numerically an example of unidirectionally coupled Duffing oscillators, we observe a coupling induced transition to collective spatio-temporal chaos, which can be understood using the derived amplitude equations.
Description
Keywords
Coupled oscillators, amplitude equations, Ginzburg-Landau equation, spatio-temporal chaos
Citation
Citation
Yanchuk, S., Perlikowski, P., Wolfrum, M., Stefański, A., & Kapitaniak, T. (2015). Amplitude equations for collective spatio-temporal dynamics in arrays of coupled systems (Version publishedVersion, Vol. 2070). Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik.