Maximal Cohen-Macaulay modules over non-isolated surface singularities and matrix problems
Date
Authors
Volume
Issue
Journal
Series Titel
Book Title
Publisher
Link to publishers version
Abstract
In this article we develop a new method to deal with maximal Cohen{ Macaulay modules over non{isolated surface singularities. In particular, we give a negative answer on an old question of Schreyer about surface singularities with only countably many indecomposable maximal Cohen{Macaulay modules. Next, we prove that the degenerate cusp singularities have tame Cohen{Macaulay representation type. Our approach is illustrated on the case of kJx; y; zK=(xyz) as well as several other rings. This study of maximal Cohen{Macaulay modules over non{isolated singularities leads to a new class of problems of linear algebra, which we call representations of decorated bunches of chains. We prove that these matrix problems have tame representation type and describe the underlying canonical forms.
Description
Keywords
Collections
License
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.