Attractors for semilinear equations of viscoelasticity with very low disspation

No Thumbnail Available
Date
2006
Authors
Gatti, Stefania
Miranville, Alain
Pata, Vittorino
Zelik, Sergey
Volume
1139
Issue
Journal
Series Titel
WIAS Preprints
Book Title
Publisher
Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik
Link to publishers version
Abstract

We analyze a differential system arising in the theory of isothermal viscoelasticity. This system is equivalent to an integrodifferential equation of hyperbolic type with a cubic nonlinearity, where the dissipation mechanism is contained only in the convolution integral, accounting for the past history of the displacement. In particular, we consider here a convolution kernel which entails an extremely weak dissipation. In spite of that, we show that the related dynamical system possesses a global attractor of optimal regularity.

Description
Keywords
License
This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.