[Gamma]-limits and relaxations for rate-independent evolutionary problems

Loading...
Thumbnail Image
Date
2006
Volume
1156
Issue
Journal
Series Titel
WIAS Preprints
Book Title
Publisher
Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik
Link to publishers version
Abstract

This work uses the energetic formulation of rate-independent systems that is based on the stored-energy functionals ε and the dissipation distance D. For sequences (ε k)k ∈ ℕ and (D k)k ∈ ℕ we address the question under which conditions the limits q∞ of solutions qk: [0,T] → Q satisfy a suitable limit problem with limit functionals ε∞ and D∞, which are the corresponding Γ-limits. We derive a sufficient condition, called emphconditional upper semi-continuity of the stable sets, which is essential to guarantee that q∞ solves the limit problem. In particular, this condition holds if certain emphjoint recovery sequences exist. Moreover, we show that time-incremental minimization problems can be used to approximate the solutions. A first example involves the numerical approximation of functionals using finite-element spaces. A second example shows that the stop and the play operator convergece if the yield sets converge in the sense of Mosco. The third example deals with a problem developing microstructure in the limit k → ∞, which in the limit can be described by an effective macroscopic model.

Description
Keywords
License
This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.