[Gamma]-limits and relaxations for rate-independent evolutionary problems

Loading...
Thumbnail Image
Date
2006
Volume
1156
Issue
Journal
Series Titel
Book Title
Publisher
Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik
Link to publishers version
Abstract

This work uses the energetic formulation of rate-independent systems that is based on the stored-energy functionals ε and the dissipation distance D. For sequences (ε k)k ∈ ℕ and (D k)k ∈ ℕ we address the question under which conditions the limits q∞ of solutions qk: [0,T] → Q satisfy a suitable limit problem with limit functionals ε∞ and D∞, which are the corresponding Γ-limits. We derive a sufficient condition, called emphconditional upper semi-continuity of the stable sets, which is essential to guarantee that q∞ solves the limit problem. In particular, this condition holds if certain emphjoint recovery sequences exist. Moreover, we show that time-incremental minimization problems can be used to approximate the solutions. A first example involves the numerical approximation of functionals using finite-element spaces. A second example shows that the stop and the play operator convergece if the yield sets converge in the sense of Mosco. The third example deals with a problem developing microstructure in the limit k → ∞, which in the limit can be described by an effective macroscopic model.

Description
Keywords
Rate-independent problems, energetic formulation, Gamma convergence, relaxation, time-incremental minimization, joint recovery sequence
Citation
Mielke, A., Toubíček, T., & Stefanelli, U. (2006). [Gamma]-limits and relaxations for rate-independent evolutionary problems (Vol. 1156). Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik.
Collections
License
This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.