Directional differentiability for elliptic quasi-variational inequalities of obstacle type

Loading...
Thumbnail Image

Date

Volume

2492

Issue

Journal

Series Titel

WIAS Preprints

Book Title

Publisher

Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik

Abstract

The directional differentiability of the solution map of obstacle type quasi-variational inequalities (QVIs) with respect to perturbations on the forcing term is studied. The classical result of Mignot is then extended to the quasi-variational case under assumptions that allow multiple solutions of the QVI. The proof involves selection procedures for the solution set and represents the directional derivative as the limit of a monotonic sequence of directional derivatives associated to specific variational inequalities. Additionally, estimates on the coincidence set and several simplifications under higher regularity are studied. The theory is illustrated by a detailed study of an application to thermoforming comprising of modelling, analysis and some numerical experiments.

Description

Keywords

License

This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.