Long-time behavior for crystal dislocation dynamics

Loading...
Thumbnail Image

Date

Volume

2302

Issue

Journal

Series Titel

WIAS Preprints

Book Title

Publisher

Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik

Link to publishers version

Abstract

We describe the asymptotic states for the solutions of a nonlocal equation of evolutionary type, which have the physical meaning of the atom dislocation function in a periodic crystal. More precisely, we can describe accurately the smoothing effect on the dislocation function occurring slightly after a particle collision (roughly speaking, two opposite transitions layers average out) and, in this way, we can trap the atom dislocation function between a superposition of transition layers which, as time flows, approaches either a constant function or a single heteroclinic (depending on the algebraic properties of the orientations of the initial transition layers). The results are endowed of explicit and quantitative estimates and, as a byproduct, we show that the ODE systems of particles that governs the evolution of the transition layers does not admit stationary solutions (i.e., roughly speaking, transition layers always move).

Description

Keywords

License

This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.