Uniqueness and nondegeneracy of positive solutions of (-Delta) su + u = up in RN when s is close to 1
Loading...
Date
2013
Journal Title
Journal ISSN
Volume Title
Publisher
Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik
Abstract
We consider the equation (-Δ)s u+u = up with s ∈ (0,1) in the subcritical range of p. We prove that if s is sufficiently close to 1 the equation possesses a unique minimizer, which is nondegenerate.
Description
Keywords
Fractional Laplacian, uniqueness results, nondegeneracy of minimizers, asymptotic methods
Citation
Citation
Fall, M. M., & Valdinoci, E. (2013). Uniqueness and nondegeneracy of positive solutions of (-Delta) su + u = up in RN when s is close to 1 (Version publishedVersion, Vol. 1804). Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik.