Efficient linear solvers for incompressible flow simulations using Scott-Vogelius finite elements

Loading...
Thumbnail Image
Date
2013
Volume
1821
Issue
Journal
Series Titel
Book Title
Publisher
Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik
Link to publishers version
Abstract

Recent research has shown that in some practically relevant situations like multi-physics flows [11] divergence-free mixed finite elements may have a significantly smaller discretization error than standard nondivergence-free mixed finite elements. In order to judge the overall performance of divergence-free mixed finite elements, we investigate linear solvers for the saddle point linear systems arising in ((Pk)d; Pdisc k-1 )) Scott-Vogelius finite element implementations of the incompressible Navier-Stokes equations. We investigate both direct and iterative solver methods. Due to discontinuous pressure elements in the case of Scott-Vogelius elements, considerably more solver strategies seem to deliver promising results than in the case of standard mixed finite elements like Taylor-Hood elements. For direct methods, we extend recent preliminary work using sparse banded solvers on the penalty method formulation to finer meshes, and discuss extensions. For iterative methods, we test augmented Lagrangian and H

Description
Keywords
Scott-Vogelius elements, linear solvers, static condensation, augmented Lagrangian preconditioning, H-LU, inkompressible Strömung, Finite-Elemente-Methode
Citation
Cousins, B., Le Borne, S., Linke, A., Rebholz, L. G., & Wang, Z. (2013). Efficient linear solvers for incompressible flow simulations using Scott-Vogelius finite elements (Vol. 1821). Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik.
Collections
License
This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.