Continuum descriptions for the dynamics in discrete lattices : derivation and justification

Loading...
Thumbnail Image
Date
2006
Volume
1126
Issue
Journal
Series Titel
Book Title
Publisher
Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik
Link to publishers version
Abstract

The passage from microscopic systems to macroscopic ones is studied by starting from spatially discrete lattice systems and deriving several continuum limits. The lattice system is an infinite-dimensional Hamiltonian system displaying a variety of different dynamical behavior. Depending on the initial conditions one sees quite different behavior like macroscopic elastic deformations associated with acoustic waves or like propagation of optical pulses. We show how on a formal level different macroscopic systems can be derived such as the Korteweg-de Vries equation, the nonlinear Schroedinger equation, Whitham's modulation equation, the three-wave interaction model, or the energy transport equation using the Wigner measure. We also address the question how the microscopic Hamiltonian and the Lagrangian structures transfer to similar structures on the macroscopic level. Finally we discuss rigorous analytical convergence results of the microscopic system to the macroscopic one by either weak-convergence methods or by quantitative error bounds.

Description
Keywords
Discrete lattice systems, modulation equations, Hamiltonian structure, multiscale ansatz, dispersive wave propagation
Citation
Giannoulis, J., Herrmann, M., & Mielke, A. (2006). Continuum descriptions for the dynamics in discrete lattices : derivation and justification (Vol. 1126). Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik.
Collections
License
This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.