Moment bounds for the corrector in stochastic homogenization of a percolation model

Loading...
Thumbnail Image

Date

Volume

1836

Issue

Journal

Series Titel

WIAS Preprints

Book Title

Publisher

Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik

Link to publishers version

Abstract

We study the corrector equation in stochastic homogenization for a simplified Bernoulli percolation model on Zd, d > 2. The model is obtained from the classical {0,1}-Bernoulli bond percolation by conditioning all bonds parallel to the first coordinate direction to be open. As a main result we prove (in fact for a slightly more general model) that stationary correctors exist and that all finite moments of the corrector are bounded. This extends a previous result in [8], where uniformly elliptic conductances are treated, to the degenerate case. Our argument is based on estimates on the gradient of the elliptic Green's function.

Description

Keywords

License

This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.