Asymptotic expansions of the contact angle in nonlocal capillarity problems

Loading...
Thumbnail Image

Date

Volume

2315

Issue

Journal

Series Titel

WIAS Preprints

Book Title

Publisher

Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik

Link to publishers version

Abstract

We consider a family of nonlocal capillarity models, where surface tension is modeled by exploiting a family of fractional interaction kernels The fractional Young's law (contact angle condition) predicted by these models coincides, in the limit, with the classical Young's law determined by the Gauss free energy. Here we refine this asymptotics by showing that, for s close to 1, the fractional contact angle is always smaller than its classical counterpart when the relative adhesion coefficient is negative, and larger if it is positive. In addition, we address the asymptotics of the fractional Young's law in the limit case s close to 0 of interaction kernels with heavy tails. Interestingly, forsmall s, the dependence of the contact angle from the relative adhesion coefficient becomes linear.

Description

Keywords

License

This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.