On stable solutions of boundary reaction-diffusion equations and applications to nonlocal problems with Neumann data
Loading...
Date
2015
Journal Title
Journal ISSN
Volume Title
Publisher
Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik
Abstract
We study reaction-diffusion equations in cylinders with possibly nonlinear diffusion and possibly nonlinear Neumann boundary conditions. We provide a geometric Poincare-type inequality and classification results for stable solutions, and we apply them to the study of an associated nonlocal problem. We also establish a counterexample in the corresponding framework for the fractional Laplacian.
Description
Keywords
Stability, symmetry results, classification of solution, reaction-diffusion equations, nonlocal equations
Citation
Citation
Dipierro, S., Soave, N., & Valdinoci, E. (2015). On stable solutions of boundary reaction-diffusion equations and
applications to nonlocal problems with Neumann data (Version publishedVersion, Vol. 2152). Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik.