Physik

Permanent URI for this collection

Browse

Recent Submissions

Now showing 1 - 5 of 2152
  • Item
    Aluminum-Doped Zinc Oxide Improved by Silver Nanowires for Flexible, Semitransparent and Conductive Electrodes on Textile with High Temperature Stability
    (Basel : MDPI, 2023) Hupfer, Maximilian Lutz; Gawlik, Annett; Dellith, Jan; Plentz, Jonathan
    In order to facilitate the design freedom for the implementation of textile-integrated electronics, we seek flexible transparent conductive electrodes (TCEs) that can withstand not only the mechanical stresses encountered during use but also the thermal stresses of post-treatment. The transparent conductive oxides (TCO) typically used for this purpose are rigid in comparison to the fibers or textiles they are intended to coat. In this paper, a TCO, specifically aluminum-doped zinc oxide (Al:ZnO), is combined with an underlying layer of silver nanowires (Ag-NW). This combination brings together the advantages of a closed, conductive Al:ZnO layer and a flexible Ag-NW layer, forming a TCE. The result is a transparency of 20–25% (within the 400–800 nm range) and a sheet resistance of 10 Ω/sq that remains almost unchanged, even after post-treatment at 180 °C.
  • Item
    Amorphous Silicon Thin-Film Solar Cells on Fabrics as Large-Scale Detectors for Textile Personal Protective Equipment in Active Laser Safety †
    (Basel : MDPI, 2023) Gawlik, Annett; Brückner, Uwe; Schmidl, Gabriele; Wagner, Volker; Paa, Wolfgang; Plentz, Jonathan
    Laser safety is starting to play an increasingly important role, especially when the laser is used as a tool. Passive laser safety systems quickly reach their limits and, in some cases, provide inadequate protection. To counteract this, various active systems have been developed. Flexible and especially textile-protective materials pose a special challenge. The market still lacks personal protective equipment (PPE) for active laser safety. Covering these materials with solar cells as large-area optical detectors offers a promising possibility. In this work, an active laser protection fabric with amorphous silicon solar cells is presented as a large-scale sensor for continuous wave and pulsed lasers (down to ns). First, the fabric and the solar cells were examined separately for irradiation behavior and damage. Laser irradiation was performed at wavelengths of 245, 355, 532, and 808 nm. The solar cell sensors were then applied directly to the laser protection fabric. The damage and destruction behavior of the active laser protection system was investigated. The results show that the basic safety function of the solar cell is still preserved when the locally damaged or destroyed area is irradiated again. A simple automatic shutdown system was used to demonstrate active laser protection within 50 ms.
  • Item
    The double-well Bose Hubbard model with nearest-neighbor and cavity-mediated long-range interactions
    ([Ithaca, NY] : Arxiv.org, 2023) Sicks, Johannes; Rieger, Heiko
    We consider a one-dimensional Bose-Hubbard model (BHM) with on-site double-well potentials and study the effect of nearest-neighbor repulsion and cavity-mediated long-range interactions by calculating the ground-state phase diagrams with quantum Monte-Carlo simulations. We show that when the intra-well repulsion is as strong as the on-site repulsion a dimerized Mott insulator phase appears at the tip of the dimerized Density Wave phase for a density of one particle per double well. Furthermore, we find a dimerized Haldane insulator phase in the double-well BHM with nearest-neighbor interaction, which is identical to a dimerized BHM with repulsive interactions up to the third neighbor.
  • Item
    Non-Markovian and Collective Search Strategies
    ([Ithaca, NY] : Arxiv.org, 2023) Meyer, Hugues; Rieger, Heiko
    Agents searching for a target can improve their efficiency by memorizing where they have already been searching or by cooperating with other searchers and using strategies that benefit from collective effects. This chapter reviews such concepts: non-Markovian and collective search strategies. We start with the first passage properties of continuous non-Markovian processes and then proceed to the discrete random walker with 1-step and n-step memory. Next we discuss the auto-chemotactic walker, a random walker that produces a diffusive chemotactic cue from which the walker tries to avoid. Then ensembles of agents searching for a single target are discussed, whence the search efficiency may comprise in addition to the first passage time also metabolic costs. We consider the first passage properties of ensembles of chemotactic random walkers and then the pursuit problem, in which searchers (or hunters / predators) see the mobile target over a certain distance. Evasion strategies of single or many targets are also elucidated. Finally we review collective foraging strategies comprising many searchers and many immobile targets. We finish with an outlook on future research directions comprising yet unexplored search strategies of immune cells and in swarm robotics.
  • Item
    Significance of Elastic Coupling for Stresses and Leakage in Frictional Contacts
    ([Ithaca, NY] : Arxiv.org, 2023) Müller, Christian; Müser, Martin H.; Carbone, Giuseppe; Menga, Nicola
    We study how the commonly neglected coupling of normal and in-plane elastic response affects tribological properties when Hertzian or randomly rough indenters slide past an elastic body. Compressibility-induced coupling is found to substantially increase maximum tensile stresses, which cause materials to fail, and to decrease friction such that Amontons law is violated macroscopically even when it holds microscopically. Confinement-induced coupling increases friction and enlarges domains of high tension. Moreover, both types of coupling affect the gap topography and thereby leakage. Thus, coupling can be much more than a minor perturbation of a mechanical contact.