Structural evolution and strain induced mixing in Cu-Co composites studied by transmission electron microscopy and atom probe tomography

Loading...
Thumbnail Image
Date
2015
Volume
100
Issue
Journal
Materials Characterization
Series Titel
Book Title
Publisher
Amsterdam : Elsevier
Abstract

A Cu–Co composite material is chosen as a model system to study structural evolution and phase formations during severe plastic deformation. The evolving microstructures as a function of the applied strain were characterized at the micro-, nano-, and atomic scale-levels by combining scanning electron microscopy and transmission electron microscopy including energy-filtered transmission electron microscopy and electron energy-loss spectroscopy. The amount of intermixing between the two phases at different strains was examined at the atomic scale using atom probe tomography as complimentary method. It is shown that Co particles are dissolved in the Cu matrix during severe plastic deformation to a remarkable extent and their size, number, and volume fraction were quantitatively determined during the deformation process. From the results, it can be concluded that supersaturated solid solutions up to 26 at.% Co in a fcc Cu–26 at.% Co alloy are obtained during deformation. However, the distribution of Co was found to be inhomogeneous even at the highest degree of investigated strain.

Description
Keywords
Citation
Bachmaier, A., Aboulfadl, H., Pfaff, M., Mücklich, F., & Motz, C. (2015). Structural evolution and strain induced mixing in Cu-Co composites studied by transmission electron microscopy and atom probe tomography (Amsterdam : Elsevier). Amsterdam : Elsevier. https://doi.org//10.1016/j.matchar.2014.12.022
Collections
License
CC BY-NC-SA 3.0 Unported