Please use this identifier to cite or link to this item: https://oa.tib.eu/renate/handle/123456789/4358
Files in This Item:
File SizeFormat 
Zwiebler_2015_New_J._Phys._17_083046.pdf2,08 MBAdobe PDFView/Open
Title: Electronic depth profiles with atomic layer resolution from resonant soft x-ray reflectivity
Authors: Zwiebler, M.Hamann-Borrero, J.E.Vafaee, M.Komissinskiy, P.Macke, S.Sutarto, R.He, F.Büchner, B.Sawatzky, G.A.Alff, L.Geck, J.
Publishers version: https://doi.org/10.1088/1367-2630/17/1/013014
URI: https://doi.org/10.34657/1484
https://oa.tib.eu/renate/handle/123456789/4358
Issue Date: 2015
Published in: New Journal of Physics, Volume 17, Issue 8
Publisher: Milton Park : Taylor & Francis
Abstract: The analysis of x-ray reflectivity data from artificial heterostructures usually relies on the homogeneity of optical properties of the constituent materials. However, when the x-ray energy is tuned to the absorption edge of a particular resonant site, this assumption may no longer be appropriate. For samples realizing lattice planes with and without resonant sites, the corresponding regions containing the sites at resonance will have optical properties very different from regions without those sites. In this situation, models assuming homogeneous optical properties throughout the material can fail to describe the reflectivity adequately. As we show here, resonant soft x-ray reflectivity is sensitive to these variations, even though the wavelength is typically large as compared to the atomic distances over which the optical properties vary. We have therefore developed a scheme for analyzing resonant soft x-ray reflectivity data, which takes the atomic structure of a material into account by 'slicing' it into atomic planes with characteristic optical properties. Using LaSrMnO4 as an example, we discuss both the theoretical and experimental implications of this approach. Our analysis not only allows to determine important structural information such as interface terminations and stacking of atomic layers, but also enables to extract depth-resolved spectroscopic information with atomic resolution, thus enhancing the capability of the technique to study emergent phenomena at surfaces and interfaces.
Keywords: Reflectometry; thin films; oxides
Type: article; Text
Publishing status: publishedVersion
DDC: 530
License: CC BY 3.0 Unported
Link to license: https://creativecommons.org/licenses/by/3.0/
Appears in Collections:Physik

Show full item record
Zwiebler, M., J.E. Hamann-Borrero, M. Vafaee, P. Komissinskiy, S. Macke, R. Sutarto, F. He, B. Büchner, G.A. Sawatzky, L. Alff and J. Geck, 2015. Electronic depth profiles with atomic layer resolution from resonant soft x-ray reflectivity. 2015. Milton Park : Taylor & Francis
Zwiebler, M., Hamann-Borrero, J. E., Vafaee, M., Komissinskiy, P., Macke, S., Sutarto, R., He, F., Büchner, B., Sawatzky, G. A., Alff, L. and Geck, J. (2015) “Electronic depth profiles with atomic layer resolution from resonant soft x-ray reflectivity.” Milton Park : Taylor & Francis. doi: https://doi.org/10.1088/1367-2630/17/1/013014.
Zwiebler M, Hamann-Borrero J E, Vafaee M, Komissinskiy P, Macke S, Sutarto R, He F, Büchner B, Sawatzky G A, Alff L, Geck J. Electronic depth profiles with atomic layer resolution from resonant soft x-ray reflectivity. Milton Park : Taylor & Francis; 2015.
Zwiebler, M., Hamann-Borrero, J. E., Vafaee, M., Komissinskiy, P., Macke, S., Sutarto, R., He, F., Büchner, B., Sawatzky, G. A., Alff, L., & Geck, J. (2015). Electronic depth profiles with atomic layer resolution from resonant soft x-ray reflectivity (Version publishedVersion). Version publishedVersion. Milton Park : Taylor & Francis. https://doi.org/https://doi.org/10.1088/1367-2630/17/1/013014
Zwiebler M, Hamann-Borrero J E, Vafaee M, Komissinskiy P, Macke S, Sutarto R, He F, Büchner B, Sawatzky G A, Alff L, Geck J. Electronic depth profiles with atomic layer resolution from resonant soft x-ray reflectivity. Published online 2015. doi:https://doi.org/10.1088/1367-2630/17/1/013014


This item is licensed under a Creative Commons License Creative Commons