Thiol-Methylsulfone Based Hydrogels: Enhanced Control on Gelation Kinetics for 3D Cell Encapsulation

Loading...
Thumbnail Image
Date
2019
Volume
Issue
Journal
Series Titel
Book Title
Publisher
Washington, DC : American Chemical Society
Abstract

Hydrogels are useful temporal matrices for cell culture technologies. The successful mixing and encapsulation of cells within the gel requires the selection of efficient and cytocompatible gelation reactions occurring in the minute timescale under physiological conditions. The thiol-methylsulfonyl (MS) chemical reaction is introduced here as a novel chemistry to encapsulate cells in polymeric matrices. Thiol-MS crosslinking does not require a light activation step and can occur within the seconds-to-minutes timescale by adjusting the pH in the physiological range 8.0-6.6. This reaction is cytocompatible and the reaction product is hydrolytically stable in cell culture media up to 4 weeks. Cell encapsulation protocols enabling comfortable handling and yielding homogenous distribution of the embedded cells are described. All these features are relevant for the application of this crosslinking reaction to biomedical scenarios. Finally, this manuscript also compares the performance of thiol-MS hydrogels with the established thiol-maleimide and thiol-vinylsulfone hydrogels. The benefit of thiol-MS crosslinking in terms of control over hydrogelation kinetics is demonstrated.

Description
Keywords
3D cell culture, thiol-mediated chemistry, coupling under physiological conditions, aromatic methylsulfones, gelation kinetics
Citation
Farrukh, A., Włodarczyk-Biegun, M. K., & del Campo, A. (2019). Thiol-Methylsulfone Based Hydrogels: Enhanced Control on Gelation Kinetics for 3D Cell Encapsulation. https://doi.org//10.26434/chemrxiv.8971136.v1
License
CC BY-NC-ND 4.0 Unported