Simulation of the last glacial cycle with a coupled climate ice-sheet model of intermediate complexity

Loading...
Thumbnail Image
Date
2010
Volume
6
Issue
2
Journal
Series Titel
Book Title
Publisher
München : European Geopyhsical Union
Link to publishers version
Abstract

A new version of the Earth system model of intermediate complexity, CLIMBER-2, which includes the three-dimensional polythermal ice-sheet model SICOPOLIS, is used to simulate the last glacial cycle forced by variations of the Earth's orbital parameters and atmospheric concentration of major greenhouse gases. The climate and ice-sheet components of the model are coupled bi-directionally through a physically-based surface energy and mass balance interface. The model accounts for the time-dependent effect of aeolian dust on planetary and snow albedo. The model successfully simulates the temporal and spatial dynamics of the major Northern Hemisphere (NH) ice sheets, including rapid glacial inception and strong asymmetry between the ice-sheet growth phase and glacial termination. Spatial extent and elevation of the ice sheets during the last glacial maximum agree reasonably well with palaeoclimate reconstructions. A suite of sensitivity experiments demonstrates that simulated ice-sheet evolution during the last glacial cycle is very sensitive to some parameters of the surface energy and mass-balance interface and dust module. The possibility of a considerable acceleration of the climate ice-sheet model is discussed.

Description
Keywords
albedo, climate variation, greenhouse gasice sheet, mass balance, Northern Hemisphere, paleoclimate, spatiotemporal analysis, surface energy, three-dimensional modeling
Citation
Ganopolski, A., Calov, R., & Claussen, M. (2010). Simulation of the last glacial cycle with a coupled climate ice-sheet model of intermediate complexity. 6(2). https://doi.org//10.5194/cp-6-229-2010
License
CC BY 3.0 Unported