Carbon Monoxide Coupling Reactions: A New Concept for the Formation of Hexahydroxybenzene

Loading...
Thumbnail Image
Date
2020
Volume
26
Issue
64
Journal
Series Titel
Book Title
Publisher
Weinheim : Wiley-VCH
Link to publishers version
Abstract

For linear and cyclic coupling reactions of CO, among other products, the formation of the hexapotassium salt of hexahydroxybenzene is of particular interesting. The interaction of metallic potassium and CO offers, via the assumed K[OC≡CO]K as the result of several carbon monoxide coupling reactions, the formation of C6(OK)6 among other products. To date, only speculations exist about the reaction pathway for these products, which were first described by Liebig in 1834. A novel concept is suggested here, which consists of the single steps (i) reductive coupling of CO, (ii) formation of dihetero-metallacyclopentynes (cis-2,5-diheterobutatriene as formal ethylenedione O=C=C=O complexes), (iii) formation of its dinuclear 1-metalla-2,5-dioxo-cyclopentyne complexes by external coordination of the triple bond, (iv) insertion of CO into the M−C bond of the formed metallacyclopropene, and (v) the reductive elimination of C6(OK)6. The novel aspect of this concept is the formation of dihetero-metallacyclopentynes (in analogy to the well characterized all-C-metallacyclopentynes), which have not been considered in the mechanism of reductive CO coupling reactions. It is expected that the presence of transition-metal impurities would promote the reaction. © 2020 The Authors. Published by Wiley-VCH GmbH

Description
Keywords
carbon monoxide, coupling, hetero-metallacyclopentynes, mechanism, unusual reactions
Citation
Rosenthal, U. (2020). Carbon Monoxide Coupling Reactions: A New Concept for the Formation of Hexahydroxybenzene. 26(64). https://doi.org//10.1002/chem.202001947
Collections
License
CC BY-NC-ND 4.0 Unported