Hydrolysis Stability of Bidentate Phosphites Utilized as Modifying Ligands in the Rh-Catalyzed n-Regioselective Hydroformylation of Olefins

Abstract

The stability of ligands and catalysts is an almost neglected issue in homogeneous catalysis, but it is crucial for successful application of this methodology in technical scale. We have studied the effect of water on phosphites, which are the most applied cocatalysts in the n-regioselective homogeneous Rh-catalyzed hydroformylation of olefins. The stability of the bidentate nonsymmetrical diphosphite L1, as well as its two monophosphite constituents L2 and L3, toward hydrolysis was investigated by means of in situ NMR spectroscopy under similar conditions as applied in industry. Hydrolysis pathways, intermediates, and kinetics were clarified. DFT calculations were used to support the experimentally found data. The acylphosphite unit L2, which reacts with water in an unselective manner, was proven to be much less stable than the phenolphosphite L3. The stability of the bidentate ligand L1 can be therefore mainly attributed to its phenolphosphite moiety. With an excess of water, the hydrolysis of L1 and L2 as well as their Rh-complexes is first-order with respect to the phosphite. Surprisingly, coordination to Rh significantly stabilizes the monodentate ligand L2, while in strong contrast, the bidentate ligand L1 decomposes faster in the Rh complex. NMR spectroscopy provided evidence for the existence of species from decomposition of phosphites, which can likewise coordinate as ligands to the metal. Electron-withdrawing groups in the periphery of the acylphosphite moiety decrease the stability of L1, whereas 3,5-disubstituted salicylic acid derivatives with bulky groups showed superior stability. These modifications of L1 also give rise to different catalytic performances in the n-regioselective hydroformylation of n-octenes and 2-pentene, from which the 3,5-di-t-butyl-substituted ligand offered a higher n-regioselectivity accompanied by a lowering of the reaction rate in comparison to the parent ligand L1.

Description
Keywords
homogeneous catalysis, phosphite, hydroformylation, rhodium, hydrolysis stability
Citation
Zhang, B., Jiao, H., Michalik, D., Kloß, S., Deter, L. M., Selent, D., et al. (2016). Hydrolysis Stability of Bidentate Phosphites Utilized as Modifying Ligands in the Rh-Catalyzed n-Regioselective Hydroformylation of Olefins. 6(11). https://doi.org//10.1021/acscatal.6b02185
Collections
License
ACS AuthorChoice