1,7,9,10-Tetrasubstituted PMIs Accessible through Decarboxylative Bromination: Synthesis, Characterization, Photophysical Studies, and Hydrogen Evolution Catalysis

Abstract

In this work, we present a new synthetic strategy for fourfold-substituted perylene monoimides via tetrabrominated perylene monoanhydrides. X-ray diffraction analysis unveiled the intramolecular stacking orientation between the substituents and semicircular packing behavior. We observed the remarkable influence of the substituent on the longevity and nature of the excited state upon visible light excitation. In the presence of poly(dehydroalanine)-graft-poly(ethylene glycol) graft copolymers as solubilizing template, the chromophores are capable of sensitizing [Mo3S13]2− clusters in aqueous solution for stable visible light driven hydrogen evolution over three days. © 2020 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH

Description
Keywords
hydrogen evolution, organic dyes, perylene monoimides, photosensitizers, transient absorption
Citation
Costabel, D., Skabeev, A., Nabiyan, A., Luo, Y., Max, J. B., Rajagopal, A., et al. (2020). 1,7,9,10-Tetrasubstituted PMIs Accessible through Decarboxylative Bromination: Synthesis, Characterization, Photophysical Studies, and Hydrogen Evolution Catalysis. 27(12). https://doi.org//10.1002/chem.202004326
Collections
License
CC BY-NC-ND 4.0 Unported