Non-synchronization of lattice and carrier temperatures in light-emitting diodes

Loading...
Thumbnail Image
Date
2016
Volume
6
Issue
Journal
Series Titel
Book Title
Publisher
[London] : Macmillan Publishers Limited, part of Springer Nature
Link to publishers version
Abstract

Pulse implementation or switching-off (PISO) of electrical currents has become a common operation in junction-temperature (Tj) measurements for semiconductor devices since 2004. Here we have experimentally discovered a substantial discrepancy between Tj values with and without, PISO (e.g., 36.8 °C versus 76.5 °C above the ambient temperature at 25.0 °C). Our research indicates that methods associated with PISO are flawed due to non-synchronization of lattice temperatures and carrier temperatures in transient states. To scrutinize this discrepancy, we propose a lattice-inertia thermal anchoring mechanism that (1) explains the cause of this discrepancy, (2) helps to develop a remedy to eliminate this discrepancy by identifying three transient phases, (3) has been applied to establishing an original, accurate and noninvasive technique for light-emitting diodes to measure Tj in the absence of PISO. Our finding may pave the foundation for LED communities to further establish reliable junction-temperature measurements based on the identified mechanism.

Description
Keywords
junction-temperature
Citation
Zhang, J., Shih, T., Lu, Y., Merlitz, H., Chang, R. R.-G., & Chen, Z. (2016). Non-synchronization of lattice and carrier temperatures in light-emitting diodes. 6. https://doi.org//10.1038/srep19539
Collections
License
CC BY 4.0 Unported