Coarse-graining via EDP-convergence for linear fast-slow reaction systems

Loading...
Thumbnail Image
Date
2019
Volume
2643
Issue
Journal
Series Titel
Book Title
Publisher
Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik
Abstract

We consider linear reaction systems with slow and fast reactions, which can be interpreted as master equations or Kolmogorov forward equations for Markov processes on a finite state space. We investigate their limit behavior if the fast reaction rates tend to infinity, which leads to a coarse-grained model where the fast reactions create microscopically equilibrated clusters, while the exchange mass between the clusters occurs on the slow time scale. Assuming detailed balance the reaction system can be written as a gradient flow with respect to the relative entropy. Focusing on the physically relevant cosh-type gradient structure we show how an effective limit gradient structure can be rigorously derived and that the coarse-grained equation again has a cosh-type gradient structure. We obtain the strongest version of convergence in the sense of the Energy-Dissipation Principle (EDP), namely EDP-convergence with tilting.

Description
Keywords
Markov process with detailed balance, linear reaction system, entropic gradient structure, energy-dissipation balance, EDP-convergence, microscopic equilibrium, coarse graining, reconstruction operators
Citation
Mielke, A., & Stephan, A. (2019). Coarse-graining via EDP-convergence for linear fast-slow reaction systems (Vol. 2643). Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik. https://doi.org//10.20347/WIAS.PREPRINT.2643
Collections
License
This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.