Site-monotonicity properties for reflection positive measures with applications to quantum spin systems
Date
Authors
Volume
Issue
Journal
Series Titel
Book Title
Publisher
Link to publishers version
Abstract
We consider a general statistical mechanics model on a product of local spaces and prove that, if the corresponding measure is reflection positive, then several site-monotonicity properties for the two-point function hold. As an application of such a general theorem, we derive site-monotonicity properties for the spin-spin correlation of the quantum Heisenberg antiferromagnet and XY model, we prove that such spin-spin correlations are point-wise uniformly positive on vertices with all odd coordinates -- improving previous positivity results which hold for the Cesàro sum -- and we derive site-monotonicity properties for the probability that a loop connects two vertices in various random loop models, including the loop representation of the spin O(N) model, the double-dimer model, the loop O(N) model, lattice permutations, thus extending the previous results of Lees and Taggi (2019).
Description
Keywords
Collections
License
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.