Quantitative heat kernel estimates for diffusions with distributional drift
Loading...
Date
2020
Volume
2768
Issue
Journal
Series Titel
WIAS Preprints
Book Title
Publisher
Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik
Link to publishers version
Abstract
We consider the stochastic differential equation on ℝ d given by d X t = b(t,Xt ) d t + d Bt, where B is a Brownian motion and b is considered to be a distribution of regularity > - 1/2. We show that the martingale solution of the SDE has a transition kernel Γt and prove upper and lower heat kernel bounds for Γt with explicit dependence on t and the norm of b.
Description
Keywords
Collections
License
This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.