Solving optimal stopping problems via randomization and empirical dual optimization
Date
Volume
Issue
Journal
Series Titel
Book Title
Publisher
Link to publishers version
Abstract
In this paper we consider optimal stopping problems in their dual form. In this way we reformulate the optimal stopping problem as a problem of stochastic average approximation (SAA) which can be solved via linear programming. By randomizing the initial value of the underlying process, we enforce solutions with zero variance while preserving the linear programming structure of the problem. A careful analysis of the randomized SAA algorithm shows that it enjoys favorable properties such as faster convergence rates and reduced complexity as compared to the non randomized procedure. We illustrate the performance of our algorithm on several benchmark examples.
Description
Keywords
Collections
License
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
