On a higher order convective Cahn-Hilliard type equation

Loading...
Thumbnail Image
Date
2010
Volume
1582
Issue
Journal
Series Titel
WIAS Preprints
Book Title
Publisher
Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik
Link to publishers version
Abstract

A convective Cahn-Hilliard type equation of sixth order that describes the faceting of a growing surface is considered with periodic boundary conditions. By using a Galerkin approach the existence of weak solutions to this sixth order partial differential equation is established in $L^2(0,T; dot H^3_per)$. Furthermore stronger regularity results have been derived and these are used to prove uniqueness of the solutions. Additionally a numerical study shows that solutions behave similarly as for the better known convective Cahn-Hilliard equation. The transition from coarsening to roughening is analyzed, indicating that the characteristic length scale decreases logarithmically with increasing deposition rate

Description
Keywords
License
This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.