On the complexity of approximating Wasserstein barycenter

Loading...
Thumbnail Image
Date
2019
Volume
2665
Issue
Journal
Series Titel
WIAS Preprints
Book Title
Publisher
Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik
Abstract

We study the complexity of approximating Wassertein barycenter of discrete measures, or histograms by contrasting two alternative approaches, both using entropic regularization. We provide a novel analysis for our approach based on the Iterative Bregman Projections (IBP) algorithm to approximate the original non-regularized barycenter. We also get the complexity bound for alternative accelerated-gradient-descent-based approach and compare it with the bound obtained for IBP. As a byproduct, we show that the regularization parameter in both approaches has to be proportional to ", which causes instability of both algorithms when the desired accuracy is high. To overcome this issue, we propose a novel proximal-IBP algorithm, which can be seen as a proximal gradient method, which uses IBP on each iteration to make a proximal step. We also consider the question of scalability of these algorithms using approaches from distributed optimization and show that the first algorithm can be implemented in a centralized distributed setting (master/slave), while the second one is amenable to a more general decentralized distributed setting with an arbitrary network topology.

Description
Keywords
License
This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.