On the complexity of approximating Wasserstein barycenter

dc.bibliographicCitation.seriesTitleWIAS Preprintseng
dc.bibliographicCitation.volume2665
dc.contributor.authorKroshnin, Alexey
dc.contributor.authorDvinskikh, Darina
dc.contributor.authorDvurechensky, Pavel
dc.contributor.authorGasnikov, Alexander
dc.contributor.authorTupitsa, Nazarii
dc.contributor.authorUribe, César A.
dc.date.accessioned2022-06-23T14:49:32Z
dc.date.available2022-06-23T14:49:32Z
dc.date.issued2019
dc.description.abstractWe study the complexity of approximating Wassertein barycenter of discrete measures, or histograms by contrasting two alternative approaches, both using entropic regularization. We provide a novel analysis for our approach based on the Iterative Bregman Projections (IBP) algorithm to approximate the original non-regularized barycenter. We also get the complexity bound for alternative accelerated-gradient-descent-based approach and compare it with the bound obtained for IBP. As a byproduct, we show that the regularization parameter in both approaches has to be proportional to ", which causes instability of both algorithms when the desired accuracy is high. To overcome this issue, we propose a novel proximal-IBP algorithm, which can be seen as a proximal gradient method, which uses IBP on each iteration to make a proximal step. We also consider the question of scalability of these algorithms using approaches from distributed optimization and show that the first algorithm can be implemented in a centralized distributed setting (master/slave), while the second one is amenable to a more general decentralized distributed setting with an arbitrary network topology.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/9249
dc.identifier.urihttps://doi.org/10.34657/8287
dc.language.isoeng
dc.publisherBerlin : Weierstraß-Institut für Angewandte Analysis und Stochastik
dc.relation.doihttps://doi.org/10.20347/WIAS.PREPRINT.2665
dc.relation.issn2198-5855
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.subject.ddc510
dc.subject.otherOptimal transporteng
dc.subject.otherWasserstein barycentereng
dc.subject.otherSinkhorn's algorithmaeng
dc.subject.otheraccelerated gradient descenteng
dc.subject.otherdistributed optimizationeng
dc.titleOn the complexity of approximating Wasserstein barycentereng
dc.typeReporteng
dc.typeTexteng
dcterms.extent28 S.
tib.accessRightsopenAccess
wgl.contributorWIAS
wgl.subjectMathematik
wgl.typeReport / Forschungsbericht / Arbeitspapier
Files