High resolution spectroscopy reveals fibrillation inhibition pathways of insulin

dc.bibliographicCitation.firstPage39622
dc.bibliographicCitation.journalTitleScientific reportseng
dc.bibliographicCitation.volume6
dc.contributor.authorDeckert-Gaudig, Tanja
dc.contributor.authorDeckert, Volker
dc.date.accessioned2022-06-01T05:33:10Z
dc.date.available2022-06-01T05:33:10Z
dc.date.issued2016
dc.description.abstractFibril formation implies the conversion of a protein’s native secondary structure and is associated with several neurodegenerative diseases. A better understanding of fibrillation inhibition and fibril dissection requires nanoscale molecular characterization of amyloid structures involved. Tip-enhanced Raman scattering (TERS) has already been used to chemically analyze amyloid fibrils on a sub-protein unit basis. Here, TERS in combination with atomic force microscopy (AFM), and conventional Raman spectroscopy characterizes insulin assemblies generated during inhibition and dissection experiments in the presence of benzonitrile, dimethylsulfoxide, quercetin, and β-carotene. The AFM topography indicates formation of filamentous or bead-like insulin self-assemblies. Information on the secondary structure of bulk samples and of single aggregates is obtained from standard Raman and TERS measurements. In particular the high spatial resolution of TERS reveals the surface conformations associated with the specific agents. The insulin aggregates formed under different inhibition and dissection conditions can show a similar morphology but differ in their β-sheet structure content. This suggests different aggregation pathways where the prevention of the β-sheet stacking of the peptide chains plays a major role. The presented approach is not limited to amyloid-related reasearch but can be readily applied to systems requiring extremely surface-sensitive characterization without the need of labels.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/9051
dc.identifier.urihttps://doi.org/10.34657/8089
dc.language.isoengeng
dc.publisher[London] : Macmillan Publishers Limited, part of Springer Nature
dc.relation.doihttps://doi.org/10.1038/srep39622
dc.relation.essn2045-2322
dc.rights.licenseCC BY 4.0 Unported
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.ddc500
dc.subject.ddc600
dc.subject.meshAmyloideng
dc.subject.meshAnimalseng
dc.subject.meshbeta Caroteneeng
dc.subject.meshCattleeng
dc.subject.meshDimethyl Sulfoxideeng
dc.subject.meshHydrogen-Ion Concentrationeng
dc.subject.meshInsulineng
dc.subject.meshMicroscopy, Atomic Forceeng
dc.subject.meshNitrileseng
dc.subject.meshPeptideseng
dc.subject.meshProtein Structure, Secondaryeng
dc.subject.meshQuercetineng
dc.subject.meshSolventseng
dc.subject.meshSpectrum Analysis, Ramaneng
dc.subject.meshTemperatureeng
dc.subject.otheramyloideng
dc.subject.otherbenzonitrileeng
dc.subject.otherbeta caroteneeng
dc.subject.otherdimethyl sulfoxideeng
dc.subject.otherinsulineng
dc.subject.othernitrileeng
dc.subject.otherpeptideeng
dc.subject.otherquercetineng
dc.subject.othersolventeng
dc.subject.otheranimaleng
dc.subject.otheratomic force microscopyeng
dc.subject.otherbovineeng
dc.subject.otherchemistryeng
dc.subject.otherpHeng
dc.subject.otherprotein secondary structureeng
dc.subject.otherRaman spectrometryeng
dc.subject.othertemperatureeng
dc.titleHigh resolution spectroscopy reveals fibrillation inhibition pathways of insulineng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorIPHTger
wgl.subjectPhysikger
wgl.subjectChemieger
wgl.typeZeitschriftenartikelger
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
High_resolution_spectroscopy_reveals_fibrillation_inhibition_pathways_of_insulin.pdf
Size:
2.69 MB
Format:
Adobe Portable Document Format
Description:
Collections