Precipitate number density determination in microalloyed steels by complementary atom probe tomography and matrix dissolution

dc.bibliographicCitation.firstPage12585
dc.bibliographicCitation.issue26
dc.bibliographicCitation.lastPage12599
dc.bibliographicCitation.volume57
dc.contributor.authorWeber, Louis
dc.contributor.authorWebel, Johannes
dc.contributor.authorMücklich, Frank
dc.contributor.authorKraus, Tobias
dc.date.accessioned2023-02-24T06:43:46Z
dc.date.available2023-02-24T06:43:46Z
dc.date.issued2022
dc.description.abstractParticle number densities are a crucial parameter in the microstructure engineering of microalloyed steels. We introduce a new method to determine nanoscale precipitate number densities of macroscopic samples that is based on the matrix dissolution technique (MDT) and combine it with atom probe tomography (APT). APT counts precipitates in microscopic samples of niobium and niobium-titanium microalloyed steels. The new method uses MDT combined with analytical ultracentrifugation (AUC) of extracted precipitates, inductively coupled plasma–optical emission spectrometry, and APT. We compare the precipitate number density ranges from APT of 137.81 to 193.56 × 1021 m−3 for the niobium steel and 104.90 to 129.62 × 1021 m−3 for the niobium-titanium steel to the values from MDT of 2.08 × 1021 m−3 and 2.48 × 1021 m−3. We find that systematic errors due to undesired particle loss during extraction and statistical uncertainties due to the small APT volumes explain the differences. The size ranges of precipitates that can be detected via APT and AUC are investigated by comparison of the obtained precipitate size distributions with transmission electron microscopy analyses of carbon extraction replicas. The methods provide overlapping resulting ranges. MDT probes very large numbers of small particles but is limited by errors due to particle etching, while APT can detect particles with diameters below 10 nm but is limited by small-number statistics. The combination of APT and MDT provides comprehensive data which allows for an improved understanding of the interrelation between thermo-mechanical controlled processing parameters, precipitate number densities, and resulting mechanical-technological material properties. Graphical abstract: [Figure not available: see fulltext.]eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/11511
dc.identifier.urihttp://dx.doi.org/10.34657/10545
dc.language.isoeng
dc.publisherDordrecht [u.a.] : Springer Science + Business Media B.V
dc.relation.doihttps://doi.org/10.1007/s10853-022-07398-z
dc.relation.essn1573-4803
dc.relation.ispartofseriesJournal of materials science 57 (2022), Nr. 26
dc.relation.issn0022-2461
dc.rights.licenseCC BY 4.0 Unported
dc.rights.urihttps://creativecommons.org/licenses/by/4.0
dc.subjectAnalytical ultracentrifugationeng
dc.subjectAtom-probe tomographyeng
dc.subjectCrucial parameterseng
dc.subjectMatrix dissolutionseng
dc.subjectMicro-alloyed steelseng
dc.subjectMicrostructure engineeringeng
dc.subjectNiobium-titaniumeng
dc.subjectNumber densityeng
dc.subjectParticle number densityeng
dc.subjectPrecipitate numbereng
dc.subject.ddc600
dc.subject.ddc540
dc.titlePrecipitate number density determination in microalloyed steels by complementary atom probe tomography and matrix dissolutioneng
dc.typearticle
dc.typeText
dcterms.bibliographicCitation.journalTitleJournal of materials science
tib.accessRightsopenAccess
wgl.contributorINM
wgl.subjectIngenieurwissenschaftenger
wgl.subjectChemieger
wgl.typeZeitschriftenartikelger
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Precipitate_number_density_determination.pdf
Size:
1.36 MB
Format:
Adobe Portable Document Format
Description: