Dynamic programming for optimal stopping via pseudo-regression

Loading...
Thumbnail Image

Date

Volume

2532

Issue

Journal

Series Titel

WIAS Preprints

Book Title

Publisher

Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik

Abstract

We introduce new variants of classical regression-based algorithms for optimal stopping problems based on computation of regression coefficients by Monte Carlo approximation of the corresponding L2 inner products instead of the least-squares error functional. Coupled with new proposals for simulation of the underlying samples, we call the approach pseudo regression. We show that the approach leads to asymptotically smaller errors, as well as less computational cost. The analysis is justified by numerical examples.

Description

Keywords

License

This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.