Dynamic programming for optimal stopping via pseudo-regression

dc.bibliographicCitation.seriesTitleWIAS Preprintseng
dc.bibliographicCitation.volume2532
dc.contributor.authorBayer, Christian
dc.contributor.authorRedmann, Martin
dc.contributor.authorSchoenmakers, John G.M.
dc.date.accessioned2018-10-11T01:46:28Z
dc.date.available2019-06-28T08:10:02Z
dc.date.issued2018
dc.description.abstractWe introduce new variants of classical regression-based algorithms for optimal stopping problems based on computation of regression coefficients by Monte Carlo approximation of the corresponding L2 inner products instead of the least-squares error functional. Coupled with new proposals for simulation of the underlying samples, we call the approach pseudo regression. We show that the approach leads to asymptotically smaller errors, as well as less computational cost. The analysis is justified by numerical examples.eng
dc.description.versionpublishedVersioneng
dc.formatapplication/pdf
dc.identifier.issn2198-5855
dc.identifier.urihttps://doi.org/10.34657/2275
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/2697
dc.language.isoengeng
dc.publisherBerlin : Weierstraß-Institut für Angewandte Analysis und Stochastikeng
dc.relation.doihttps://doi.org/10.20347/WIAS.PREPRINT.2532
dc.relation.issn0946-8633eng
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.subject.ddc510eng
dc.subject.otherAmerican optionseng
dc.subject.otheroptimal stoppingeng
dc.subject.otherlinear regressioneng
dc.titleDynamic programming for optimal stopping via pseudo-regressioneng
dc.typeReporteng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorWIASeng
wgl.subjectMathematikeng
wgl.typeReport / Forschungsbericht / Arbeitspapiereng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1031859861.pdf
Size:
337.3 KB
Format:
Adobe Portable Document Format
Description: