Lithium metal penetration induced by electrodeposition through solid electrolytes: Example in single-crystal Li6La3ZrTaO12 garnet

dc.bibliographicCitation.firstPageA3648
dc.bibliographicCitation.issue16
dc.bibliographicCitation.lastPageA3655
dc.bibliographicCitation.volume165
dc.contributor.authorSwamy, Tushar
dc.contributor.authorPark, Richard
dc.contributor.authorSheldon, Brian W.
dc.contributor.authorRettenwander, Daniel
dc.contributor.authorPorz, Lukas
dc.contributor.authorBerendts, Stefan
dc.contributor.authorUecker, Reinhard
dc.contributor.authorCarter, W. Craig
dc.contributor.authorChiang, Yet-Ming
dc.date.accessioned2023-03-06T07:55:38Z
dc.date.available2023-03-06T07:55:38Z
dc.date.issued2018
dc.description.abstractSolid electrolytes potentially enable rechargeable batteries with lithium metal anodes possessing higher energy densities than today’s lithium ion batteries. To do so the solid electrolyte must suppress instabilities that lead to poor coulombic efficiency and short circuits. In this work, lithium electrodeposition was performed on single-crystal Li6La3ZrTaO12 garnets to investigate factors governing lithium penetration through brittle electrolytes. In single crystals, grain boundaries are excluded as paths for lithium metal propagation. Vickers microindentation was used to introduce surface flaws of known size. However, operando optical microscopy revealed that lithium metal penetration propagates preferentially from a different, second class of flaws. At the perimeter of surface current collectors smaller in size than the lithium source electrode, an enhanced electrodeposition current density causes lithium filled cracks to initiate and grow to penetration, even when large Vickers defects are in proximity. Modeling the electric field distribution in the experimental cell revealed that a 5-fold enhancement in field occurs within 10 micrometers of the electrode edge and generates high local electrochemomechanical stress. This may determine the initiation sites for lithium propagation, overriding the presence of larger defects elsewhere.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/11680
dc.identifier.urihttp://dx.doi.org/10.34657/10713
dc.language.isoeng
dc.publisherPennington, NJ : Electrochemical Society
dc.relation.doihttps://doi.org/10.1149/2.1391814jes
dc.relation.essn0096-4743
dc.relation.essn0096-4786
dc.relation.ispartofseriesJournal of The Electrochemical Society 165 (2018), Nr. 16eng
dc.rights.licenseCC BY 4.0 Unported
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectCoulombic efficiencyeng
dc.subjectElectric field distributionseng
dc.subjectElectrochemomechanicaleng
dc.subjectElectrodeposition current densitieseng
dc.subjectHigher energy densityeng
dc.subjectInitiation siteseng
dc.subjectLithium metal anodeeng
dc.subjectVickers microindentationeng
dc.subject.ddc540
dc.subject.ddc620
dc.subject.ddc660
dc.titleLithium metal penetration induced by electrodeposition through solid electrolytes: Example in single-crystal Li6La3ZrTaO12 garneteng
dc.typearticle
dc.typeText
dcterms.bibliographicCitation.journalTitleJournal of The Electrochemical Society
tib.accessRightsopenAccess
wgl.contributorIKZ
wgl.subjectChemieger
wgl.subjectIngenieurwissenschaftenger
wgl.typeZeitschriftenartikelger
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Swamy_2018_J_Electrochem_Soc_165_A3648.pdf
Size:
1.23 MB
Format:
Adobe Portable Document Format
Description: