TIB's visual analytics group at MediaEval '20: Detecting fake news on corona virus and 5G conspiracy
dc.bibliographicCitation.bookTitle | MediaEval 2020: Multimedia Benchmark Workshop 2020 | eng |
dc.bibliographicCitation.firstPage | 56 | |
dc.bibliographicCitation.journalTitle | CEUR workshop proceedings | eng |
dc.bibliographicCitation.volume | 2882 | |
dc.contributor.author | Cheema, Gullal S. | |
dc.contributor.author | Hakimov, Sherzod | |
dc.contributor.author | Ewerth, Ralph | |
dc.contributor.editor | Hicks, Steven | |
dc.date.accessioned | 2022-09-01T04:42:30Z | |
dc.date.available | 2022-09-01T04:42:30Z | |
dc.date.issued | 2020 | |
dc.description.abstract | Fake news on social media has become a hot topic of research as it negatively impacts the discourse of real news in the public. Specifi-cally, the ongoing COVID-19 pandemic has seen a rise of inaccurate and misleading information due to the surrounding controversies and unknown details at the beginning of the pandemic. The Fak-eNews task at MediaEval 2020 tackles this problem by creating a challenge to automatically detect tweets containing misinformation based on text and structure from Twitter follower network. In this paper, we present a simple approach that uses BERT embeddings and a shallow neural network for classifying tweets using only text, and discuss our findings and limitations of the approach in text-based misinformation detection. | eng |
dc.description.version | publishedVersion | eng |
dc.identifier.uri | https://oa.tib.eu/renate/handle/123456789/10132 | |
dc.identifier.uri | http://dx.doi.org/10.34657/9170 | |
dc.language.iso | eng | eng |
dc.publisher | Aachen, Germany : RWTH Aachen | |
dc.relation.essn | 1613-0073 | |
dc.relation.uri | http://ceur-ws.org/Vol-2882/paper56.pdf | |
dc.rights.license | CC BY 4.0 Unported | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.subject.ddc | 004 | |
dc.subject.gnd | Konferenzschrift | ger |
dc.subject.other | Viruses | eng |
dc.subject.other | Hot topics | eng |
dc.subject.other | Misleading informations | eng |
dc.subject.other | Simple approach | eng |
dc.subject.other | Social media | eng |
dc.subject.other | Visual analytics | eng |
dc.subject.other | Social networking (online) | eng |
dc.title | TIB's visual analytics group at MediaEval '20: Detecting fake news on corona virus and 5G conspiracy | eng |
dc.type | BookPart | eng |
dc.type | Text | eng |
dcterms.event | MediaEval 2020 Workshop, 14-15 December 2020, Online | |
tib.accessRights | openAccess | eng |
wgl.contributor | TIB | |
wgl.subject | Informatik | ger |
wgl.type | Buchkapitel / Sammelwerksbeitrag | ger |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- TIB's_visual_analytics_group.pdf
- Size:
- 595.28 KB
- Format:
- Adobe Portable Document Format
- Description: