TIB's visual analytics group at MediaEval '20: Detecting fake news on corona virus and 5G conspiracy

dc.bibliographicCitation.bookTitleMediaEval 2020: Multimedia Benchmark Workshop 2020eng
dc.bibliographicCitation.firstPage56
dc.bibliographicCitation.journalTitleCEUR workshop proceedingseng
dc.bibliographicCitation.volume2882
dc.contributor.authorCheema, Gullal S.
dc.contributor.authorHakimov, Sherzod
dc.contributor.authorEwerth, Ralph
dc.contributor.editorHicks, Steven
dc.date.accessioned2022-09-01T04:42:30Z
dc.date.available2022-09-01T04:42:30Z
dc.date.issued2020
dc.description.abstractFake news on social media has become a hot topic of research as it negatively impacts the discourse of real news in the public. Specifi-cally, the ongoing COVID-19 pandemic has seen a rise of inaccurate and misleading information due to the surrounding controversies and unknown details at the beginning of the pandemic. The Fak-eNews task at MediaEval 2020 tackles this problem by creating a challenge to automatically detect tweets containing misinformation based on text and structure from Twitter follower network. In this paper, we present a simple approach that uses BERT embeddings and a shallow neural network for classifying tweets using only text, and discuss our findings and limitations of the approach in text-based misinformation detection.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/10132
dc.identifier.urihttp://dx.doi.org/10.34657/9170
dc.language.isoengeng
dc.publisherAachen, Germany : RWTH Aachen
dc.relation.essn1613-0073
dc.relation.urihttp://ceur-ws.org/Vol-2882/paper56.pdf
dc.rights.licenseCC BY 4.0 Unported
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.ddc004
dc.subject.gndKonferenzschriftger
dc.subject.otherViruseseng
dc.subject.otherHot topicseng
dc.subject.otherMisleading informationseng
dc.subject.otherSimple approacheng
dc.subject.otherSocial mediaeng
dc.subject.otherVisual analyticseng
dc.subject.otherSocial networking (online)eng
dc.titleTIB's visual analytics group at MediaEval '20: Detecting fake news on corona virus and 5G conspiracyeng
dc.typeBookParteng
dc.typeTexteng
dcterms.eventMediaEval 2020 Workshop, 14-15 December 2020, Online
tib.accessRightsopenAccesseng
wgl.contributorTIB
wgl.subjectInformatikger
wgl.typeBuchkapitel / Sammelwerksbeitragger
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
TIB's_visual_analytics_group.pdf
Size:
595.28 KB
Format:
Adobe Portable Document Format
Description: