Atomic Sn–enabled high-utilization, large-capacity, and long-life Na anode

dc.bibliographicCitation.firstPageeabm7489
dc.bibliographicCitation.issue19
dc.bibliographicCitation.journalTitleScience Advanceseng
dc.bibliographicCitation.volume8
dc.contributor.authorXu, Fei
dc.contributor.authorQu, Changzhen
dc.contributor.authorLu, Qiongqiong
dc.contributor.authorMeng, Jiashen
dc.contributor.authorZhang, Xiuhai
dc.contributor.authorXu, Xiaosa
dc.contributor.authorQiu, Yuqian
dc.contributor.authorDing, Baichuan
dc.contributor.authorYang, Jiaying
dc.contributor.authorCao, Fengren
dc.contributor.authorYang, Penghui
dc.contributor.authorJiang, Guangshen
dc.contributor.authorKaskel, Stefan
dc.contributor.authorMa, Jingyuan
dc.contributor.authorLi, Liang
dc.contributor.authorZhang, Xingcai
dc.contributor.authorWang, Hongqiang
dc.date.accessioned2022-07-13T06:33:14Z
dc.date.available2022-07-13T06:33:14Z
dc.date.issued2022
dc.description.abstractConstructing robust nucleation sites with an ultrafine size in a confined environment is essential toward simultaneously achieving superior utilization, high capacity, and long-term durability in Na metal-based energy storage, yet remains largely unexplored. Here, we report a previously unexplored design of spatially confined atomic Sn in hollow carbon spheres for homogeneous nucleation and dendrite-free growth. The designed architecture maximizes Sn utilization, prevents agglomeration, mitigates volume variation, and allows complete alloying-dealloying with high-affinity Sn as persistent nucleation sites, contrary to conventional spatially exposed large-size ones without dealloying. Thus, conformal deposition is achieved, rendering an exceptional capacity of 16 mAh cm−2 in half-cells and long cycling over 7000 hours in symmetric cells. Moreover, the well-known paradox is surmounted, delivering record-high Na utilization (e.g., 85%) and large capacity (e.g., 8 mAh cm−2) while maintaining extraordinary durability over 5000 hours, representing an important breakthrough for stabilizing Na anode.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/9728
dc.identifier.urihttps://doi.org/10.34657/8766
dc.language.isoengeng
dc.publisherWashington, DC [u.a.] : Assoc.
dc.relation.doihttps://doi.org/10.1126/sciadv.abm7489
dc.relation.essn2375-2548
dc.rights.licenseCC BY-NC 4.0 Unported
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc500
dc.subject.otherAnodeseng
dc.subject.otherDurabilityeng
dc.subject.otherConfined environmenteng
dc.subject.otherDealloyingeng
dc.subject.otherHigh capacityeng
dc.subject.otherHigh utilizationseng
dc.subject.otherHigh-capacityeng
dc.subject.otherLong lifeeng
dc.subject.otherLong term durabilityeng
dc.subject.otherNucleation siteseng
dc.subject.otherUltra-fineseng
dc.subject.otherUltrafineeng
dc.subject.otherNucleationeng
dc.titleAtomic Sn–enabled high-utilization, large-capacity, and long-life Na anodeeng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorIFWDger
wgl.subjectIngenieurwissenschaftenger
wgl.subjectChemieger
wgl.typeZeitschriftenartikelger
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Atomic_Sn–enabled_high-utilization.pdf
Size:
4.51 MB
Format:
Adobe Portable Document Format
Description: