Hybrid-Aerogele als biomemetische 3D-Gerüststrukturen für regenerative Knochenkrebstherapie

dc.contributor.authorMaleki, Hajar
dc.date.accessioned2025-05-08T09:13:23Z
dc.date.available2025-05-08T09:13:23Z
dc.date.issued2025
dc.description.abstractThe treatment of malignant bone tumors and the restoration of bone damage following tumor resection remain significant clinical challenges. Addressing tumor-induced bone damage typically requires the implantation of biomimetic porous 3D materials with dual functionality: the local treatment of residual tumor cells and the subsequent restoration of bone tissue. There is an urgent need to develop dual-functional scaffold materials that fulfill the stringent requirements for both biological and tumor-therapeutic efficacy. Aerogels have emerged as promising biomaterials for targeted bone tissue regeneration due to their exceptional physical and microstructural properties, particularly their extensive po- rosity, pore interconnectivity, and high internal surface area. The primary objective of this project is to develop novel multi-functional 3D-printed composite aerogels as scaffold materials for bone tumor management. These aerogels are designed using surface-modified silk fibroin (SF) combined with functional nanoparticles to achieve dual functionality: high photothermal conversion for tumor ablation and osteogenic properties for bone regeneration. The design leverages surface modification, self-assembly, and ad- vanced 3D printing techniques. The unique self-assembly properties of surface-modified SF in solution, coupled with its hybridization with anisotropic nanomaterials (e.g., electrospun silica nanofibers, photothermally active nanoparticles/ agents such 2D nanosheets), enable the production of range of multifunctional composite aerogel scaffolds with interconnected and hierarchical porosity and biodegradability. Furthermore, the most promising materials undergo evaluation for their in vitro therapeutic efficacy and bone regeneration capabilities. By integrating 3D printing with innovative material concepts (e.g., composite aerogels), this project aims to address the critical clinical challenges of bone healing.eng
dc.description.sponsorshipDFG, DFG-Geschäftszeichen: MA 8575/3-1
dc.description.versionpublishedVersion
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/18861
dc.identifier.urihttps://doi.org/10.34657/17878
dc.language.isoeng
dc.publisherHannover : Technische Informationsbibliothek
dc.rights.licenseEs gilt deutsches Urheberrecht. Das Werk bzw. der Inhalt darf zum eigenen Gebrauch kostenfrei heruntergeladen, konsumiert, gespeichert oder ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. - German copyright law applies. The work or content may be downloaded, consumed, stored or printed for your own use but it may not be distributed via the internet or passed on to external parties.
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.subject.ddc620
dc.titleHybrid-Aerogele als biomemetische 3D-Gerüststrukturen für regenerative Knochenkrebstherapieger
dc.typeReport
dc.typeText
dcterms.extent13. S.
tib.accessRightsopenAccess
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
DFG-Project-Final-Report_Hybrid-Aerogele_als_biomemetische_3D-Gerüststrukturen_für_regenerative_Knochenkrebstherapie.pdf
Size:
725.13 KB
Format:
Adobe Portable Document Format
Description: