Simulation of thermally induced stresses in glass-polymer composites
Date
Volume
Issue
Journal
Series Titel
Book Title
Publisher
Link to publishers version
Abstract
Due to differenees in thermal expansion, crazing and delamination effects are observed in multiphase materials such as glasspolymer composites. For a composite consisting of spherical particles homogeneously embedded in a matrix phase, the radial and tangential stresses occurring have been simulated. Two-dimensional calculations were used as a basis for optimizing the optical transparency of the material which was found to be strongly affected by the mechanical properties of the constituents of the composite and the resulting stresses. Further, the influence of the shape and the size distribution of the particles on the emergence of scattering surfaces inside the material is described. With the Christiansen-Shelyubskii method the maximum transparency of a potential material depending on whether it is a gradient material or not can be predicted.